metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yue Chen

College of Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China

Correspondence e-mail: chenyue_qd@126.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.033 wR factor = 0.094 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua[4-bromo-2-(pyridinylmethyliminomethyl)phenolato]zinc(II) nitrate monohydrate

In the cation of the title complex, $[Zn(C_{13}H_{10}BrN_2O)(H_2O)]-(NO_3)\cdot H_2O$, the Zn atom is coordinated by two N and two O atoms, giving a slightly distorted square-planar geometry. The crystal structure is stabilized by intermolecular $O-H\cdots O$ hydrogen-bond interactions.

Comment

The Zn^{II} cation permits a wide variety of coordination geometry (Erxleben, 2001; Chisholm *et al.*, 2001; Halvorsen *et al.*, 1995; Brand & Vahrenkamp, 2000). The Schiff base ligand 4-bromo-2-(pyridinylmethyliminomethyl)phenol is a tridentate chelating agent. However, this ligand does not saturate the coordination of Zn, which is thus potentially suitable to be coordinated by other donor atoms. A new zinc(II) complex, (I), derived from the tridentate chelating Schiff base ligand, is described here.

The crystal structure of (I) is shown in Fig. 1. The complex consists of a mononuclear zinc(II) cation, a nitrate anion and an uncoordinated water molecule. In the cation, the coord-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved **Figure 1** O O The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Received 24 October 2005 Accepted 16 November 2005 Online 26 November 2005

The packing of (I); the dashed lines indicate intermolecular $O-H\cdots O$ hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

ination sites are occupied by the donor atoms of the Schiff base ligand and by the O atom of a water molecule, giving a slightly distorted square-planar geometry with an average deviation of 0.075 (3) Å; the Zn atom lies 0.0642 (4) Å above this plane. The Schiff base ligand is nearly planar with an average deviation of 0.035 (2) Å. The Zn1-N2 distance (Table 1) is appreciably longer than the Zn1-N1 bond distance because of the steric requirements of the rigid Schiff base ligand.

The crystal packing of (I) is shown in Fig. 2. There are intermolecular $O-H\cdots O$ hydrogen-bond interactions (Table 2) stabilizing the structure.

Experimental

All the chemicals were of AR grade. 5-Bromosalicylaldehyde (40.2 mg, 0.2 mmol) and 2-aminomethylpyridine (21.6 mg, 0.2 mmol) were refluxed in 10 ml methanol for 30 min, then an aqueous solution (10 ml) of $Zn(NO_3)_2$ ·6H₂O (58.6 mg, 0.2 mmol) was added. The mixture was refluxed for 1 h. The mixture was cooled to room temperature and filtered. After keeping the filtrate in air for 3 d, yellow block crystals suitable for X-ray analysis were obtained.

Crystal data

$[Zn(C_{13}H_{10}BrN_2O)(H_2O)]$ -	Z = 2
$(NO_3) \cdot H_2O$	$D_x = 1.911 \text{ Mg m}^{-3}$
$M_r = 453.55$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 3326
a = 7.841 (2) Å	reflections
b = 9.043 (2) Å	$\theta = 2.5 - 27.8^{\circ}$
c = 12.012 (2) Å	$\mu = 4.13 \text{ mm}^{-1}$
$\alpha = 106.962 \ (2)^{\circ}$	T = 298 (2) K
$\beta = 102.781 \ (3)^{\circ}$	Block, yellow
$\gamma = 93.040 \ (3)^{\circ}$	$0.18 \times 0.13 \times 0.10 \text{ mm}$
V = 788.2 (3) Å ³	

Data collection

Bruker SMART APEX CCD area-	
detector diffractometer	
φ and ω scans	
Absorption correction: multi-scan	
(SADABS; Bruker, 2000)	
$T_{\rm min} = 0.508, T_{\rm max} = 0.662$	
6664 measured reflections	

Refinement

Refinement on F^2 w $R[F^2 > 2\sigma(F^2)] = 0.033$ w $wR(F^2) = 0.094$ SS = 1.04(a3390 reflections Δ 229 parameters Δ H atoms treated by a mixture of
independent and constrained
refinement

3390 independent reflections 2901 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.0^{\circ}$ $h = -9 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^{\ 2}) + (0.0513P)^2 \\ &+ 0.5173P] \\ &where \ P = (F_{\rm o}^{\ 2} + 2F_{\rm c}^{\ 2})/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1			
Selected	geometric parameters	(Å,	°).

Zn1-O1	1.890 (2)	Zn1-O5	1.979 (2)
Zn1-N1	1.937 (2)	Zn1-N2	1.983 (2)
01-Zn1-N1	93.63 (9)	O1-Zn1-N2	176.84 (9)
01-Zn1-O5	88.94 (9)	N1-Zn1-N2	83.32 (10)
N1-Zn1-O5	171.43 (10)	O5-Zn1-N2	94.20 (9)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline O6-H6A\cdots O1^{i} \\ O5-H5B\cdots O6 \end{array}$	0.85 (3)	2.10 (3)	2.929 (3)	168 (4)
	0.84 (4)	1.83 (4)	2.659 (3)	168 (4)
$\begin{array}{c} \text{O5-H5}C\cdots\text{O4}\\ \text{O6-H6}B\cdots\text{O3}^{\text{ii}} \end{array}$	0.84 (4)	1.83 (4)	2.664 (3)	172 (4)
	0.85 (4)	1.95 (4)	2.780 (4)	167 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z.

H atoms of the water molecules were located in a difference Fourier map and refined isotropically, with O–H distances restrained to 0.85 (1) Å and H···H distances restrained to 1.38 (2) Å. All other H atoms were positioned geometrically and refined as riding atoms, with C–H distances of 0.93–0.97 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from the Qingdao University is gratefully acknowledged.

References

- Brand, U. & Vahrenkamp, H. (2000). Inorg. Chim. Acta, 308, 97-102.
- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chisholm, M. H., Gallucci, J. C. & Zhen, H. (2001). Inorg. Chem. 40, 5051– 5054.
- Erxleben, A. (2001). Inorg. Chem. 40, 208-213.

Halvorsen, K., Crosby, G. A. & Wacholtz, W. F. (1995). *Inorg. Chim. Acta*, **228**, 81–88.